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Fig. 2. (a) Octagonal tessellation in rhombic cell. (b) Diffraction 

pattern of lattice points about the center of Fig. 2(a). 

octagonal tessellation pattern is non-periodic, as in the case 
of pentagonal tessellation (Mackay, 1981). The ratio of 
similarity from nth to (n + 1)th generation for this tessella- 
tion is 1/(2+x/2). 

As far as we know the eightfold symmetry diffraction 
pattern of a non-periodic structure has not yet been repor- 
ted. The diffraction pattern (Fig. 2b) of the tessellation 
shown in Fig. 2(a) was calculated by a FFT algorithm 
assuming that point-like atoms of 1423 are located at lattice 
points about the center of the rhombic cell. All the coordi- 
nates of lattice points in the nth-generation pattern can be 
computed from those of the zeroth-generation pattern by 
applying the self-similar subdividing operation recursively. 

In Fig. 2(b) we can also see sharp Bragg-like peaks with 
eightfold symmetry as expected, which might prove that 
the tessellation is a two-dimensional quasi-lattice. 
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Abstract 

A method is described to determine the molecular envelope 
from an isomorphous replacement phased electron density 
map using the reciprocal-space equivalent of B. C. Wang's 
algorithm [Wang (1985). In Methods in Enzymology, Vol. 
115: Diffraction Methods for Biological Macromolecules, 
edited by H. Wyckoff, C. H. W. Hirs & S. N. Timasheff. 
New York: Academic Press.]. In the case of chloram- 
phenicol acetyl transferase the computation time was 
reduced from 35 h (using the real-space algorithm) to 
40 min. 

A suite of programs designed to improve the quality of 
protein electron density maps has recently been developed 
and distributed by B. C. Wang and colleagues (Wang, 1985). 
The basis of their method is to use the electron density map 
to determine a molecular envelope and then to set the 
electron density in the solvent region to a constant value 

(solvent flattening) and apply a positivity constraint to the 
electron density in the protein region. The modified electron 
density map is Fourier transformed, and the resulting 
phases combined with the original single isomorphous 
replacement (or multiple isomorphous replacement) phase 
information. The combined phases are then used to calcu- 
late a new electron density map, and the whole procedure 
is repeated iteratlvely until there is no further improvement 
in the quality of the electron density. 

The solvent flattening part of this procedure has been 
used successfully in the structure determination of human 
alpha-1 proteinase inhibitor (Loebermann, Tokuoka, 
Deisenhofer & Huber, 1984), the photosynthetic reaction 
centre (Deisenhofer, Epp, Miki, Huber & Michel, 1984) 
and a light-harvesting biliprotein (Schirmer, Bode, Huber, 
Sidler & Zuber, 1985), all at 3/~, resolution, and similar 
results have been obtained by Wang and colleagues in the 
structure determination of cytochrome c5 at 2.5 A resolu- 
tion (Carter, Melis, O'Donnell, Burgess, Furey, Wang & 
Stout, 1985) as well as a number of structures at lower 
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resolution. As expected, the method is most powerful when 
the solvent content of the crystals is high (70% for the first 
three examples). 

The concept of using solvent flattening to improve 
isomorphous replacement phases is not new, all the 
necessary programs are available in Bricogne's molecular 
averaging package (Bricogne, 1976). Sigler and colleagues 
(Schevitz, Podjarny, Zwick, Hughes & Sigler, 1981) used 
the same approach to produce a dramatic improvement in 
the electron density map of fMet- tRNA at 4/~ resolution 
(also 70% solvent). What is novel about Wang's approach' 
is the algorithm that he uses to determine the molecular 
envelope from the original electron density map. Instead 
of relying on visual inspection of the map (usually using 
an interactive graphics display), Wang's procedure has the 
advantage of being fully automatic. [An alternative auto- 
mated procedure has also been proposed by Bhat & Blow 
(1982).] The first step in Wang's procedure is to calculate 
an 'averaged' map from the isomorphous replacement map, 
by replacing the electron density at each grid point by the 
weighted average of the electron density at all surrounding 
grid points within a sphere of radius R. 

The weighting function used is 

w ( i ) = l - r ( i ) / R  for p ( i )>  0 

=0  f o r p ( i ) < 0  

where p (i) is the electron density at grid point i at a distance 
r(i) from the centre of the sphere. It is important to realize 
that because negative densities are ignored (i.e. given a 
weight of zero), the result is not the same as simply calculat- 
ing a map at low resolution. The second step is to compute 
a histogram of the electron densities in the resulting 
averaged map, and to choose a 'solvent level' so that the 
number of grid points with density less than this solvent 
level corresponds to the expected solvent content of the 
crystal. [The solvent content can be estimated using the 
formula given by Matthews (1968) based on the unit-cell 
contents and the protein molecular weight.] All grid points 
in the averaged map with a density less than the solvent 
level are then considered to be in the solvent, while the 
remainder define the protein. 

The optimum value of the averaging radius R depends 
on both the resolution of the electron density map and on 
its quality (i.e. the noise level inthe solvent region). Typi- 
cally a value between 8 and 10 A is used to average a 3/~ 
resolution isomorphous replacement map. 

The calculation of the averaged map can be extremely 
expensive in computing time, particularly since Wang's 
distributed programs require that the calculation be done 
in space group P1. As an example, chloramphenicol acetyl 
transferase (CAT) crystallizes in space group R32 with 
equivalent hexagonal cell parameters a=107.6,  c=  
123.4/~. A 3/~ resolution map calculated on a 1-1/~ grid 
was averaged using a radius R = 10/~; this calculation 
required 35 h CPU time on a VAX 11/750. 

The calculation can be made very much faster by using 
reciprocal-space methods based on the fast Fourier trans- 
form (FFT). A similar approach has been described by 
Namba & Stubbs (1985) to improve isomorphous phase 
information derived from fibre diffraction experiments. The 
authors use a Gaussian weighting function in reciprocal 
space which, as shown below, will produce very similar 
results to Wang's procedure. 

Wang's averaging procedure in real space is directly 
equivalent to convoluting the truncated isomorphous 
replacement map (i.e. the map with all negative electron 
density values set to zero) with the weighting function w(r) 
given by 

w ( r ) = l - r / R  r < R  

=0  r > R .  

This may be written as 

Pav(i,j, k) = Ptr(i,j, k) ^ w(r) 

where Pay is the averaged map, Ptr is the truncated map 
and A denotes convolution. 

From the convolution theorem it follows that 

FT[Pav(i,j , k) ]=  FT[Ptr(i,j , k)] * FT[w(r)] 

where FT[ ] denotes the Fourier transform. The Fourier 
transform of the truncated map is readily calculated using 
standard FFT programs and it can be shown that the Fourier 
transform of w(r) is given by 

g(s)--  FT[w(r)] = Y ( u g ) - Z ( u g )  

where 
s = 2sin0/h 

u = 2Its 

Y(x )  = 3(sin x -  x cos x) /  x s 

Z ( x )  = 312x sin x -  (x 2 - 2 )  cos x - 2 ] / x  4. 

[See James (1948), p. 466, for a similar example.] 
Thus, to compute the averaged map, the structure factors 

obtained by back-transforming the truncated map are multi- 
plied by the function g(s) and the modified coefficients are 
used to calculate a new map which will be identical to that 
produced by averaging in real space. In the case of CAT, 
the CPU time was reduced from 35 h to 40 min, even though 
(in the absence of an R32 FFT program) the calculation 
was performed in space group P1. 

The function g(s) is similar in form to the transform of 
a sphere (which would correspond to the weighting function 
w = 1 for r <  R, w =0  for r >  R) but falls off rather less 
rapidly. For R = 10/~, the function has values less than 
0.001 for Bragg spacings less than 5/~, and therefore Four- 
ier terms corresponding to spacings less than 5/~ will make 
no significant contribution to the averaged map. 

The averaging procedure can easily be modified to use 
different weighting functions w(r), provided that the Four- 
ier transform g(s) can be calculated analytically. Tests using 
the function 

w = 1 - ( r /R )  2 

gave very similar results to the original weighting function, 
suggesting that the averaged map, and hence the molecular 
envelope, is rather insensitive to the precise form of the 
weighting function. 

Namba & Stubbs (1985) used a Gaussian weighting func- 
2 tion with an artificial temperature factor of 300/1, in place 

of the function g(s). This gives weights very similar to those 
given by the function g(s) with a radius R = 10 A. 
Two practical points are worthy of mention: 

(1). It is common practice to omit low-resolution terms 
(Bragg spacings greater than about 10/~) from isomorphous 
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replacement maps, either because the data have not been 
measured or because the phasing is poor (possibly due to 
non-isomorphism arising from changes in solvent struc- 
ture). However, when using the reciprocal-space algorithm, 
it is essential that all low-resolution terms are calculated 
from the back-transform of the truncated map and included 
in the calculation of the averaged map. This is because it 
is precisely these terms that contain the information on the 
gross shape of the molecular envelope. 

(2). The step which truncates the isomorphous replace- 
ment map can also be used to eliminate large positive peaks 
in the map which could otherwise distort the local molecular 
boundary. Such peaks can arise from several sources, such 
as ripples around heavy-atom positions, build up of errors 
on crystallographic symmetry axes or the presence of metal 
ions in the protein structure. 

The programs required for the application of the 
reciprocal-space algorithm are written in Fortran 77 suitable 
for a VAX computer. The programs and documentation 
are available on request from the author. 

The author wishes to thank one of the referees for bring- 
ing his attention to the paper by Namba & Stubbs (1985). 
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